On finite element methods for 3D time–dependent convection–diffusion–reaction equations with small diffusion
نویسندگان
چکیده
The paper studies finite element methods for the simulation of time–dependent convection–diffusion–reaction equations with small diffusion: the SUPG method, a SOLD method and two types of FEM– FCT methods. The methods are assessed, in particular with respect to the size of the spurious oscillations in the computed solutions, at a 3D example with nonhomogeneous Dirichlet boundary conditions and homogeneous Neumann boundary conditions.
منابع مشابه
Finite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملNumerical solution of Convection-Diffusion equations with memory term based on sinc method
In this paper, we study the numerical solution of Convection-Diffusion equation with a memory term subject to initial boundary value conditions. Finite difference method in combination with product trapezoidal integration rule is used to discretize the equation in time and sinc collocation method is employed in space. The accuracy and error analysis of the method are discussed. Numeric...
متن کاملSpace-Time Discontinuous Galerkin Methods for Optimal Control Problems Governed by Time Dependent Diffusion-Convection-Reaction Equations
In this paper, space-time discontinuous Galerkin finite element method for distributed optimal control problems governed by unsteady diffusion-convectionreaction equation without control constraints is studied. Time discretization is performed by discontinuous Galerkin method with piecewise constant and linear polynomials, while symmetric interior penalty Galerkin with upwinding is used for spa...
متن کاملA Second Order Characteristic Mixed Finite Element Method for Convection Diffusion Reaction Equations
A combined approximate scheme is defined for convection-diffusion-reaction equations. This scheme is constructed by two methods. Standard mixed finite element method is used for diffusion term. A second order characteristic finite element method is presented to handle the material derivative term, that is, the time derivative term plus the convection term. The stability is proved and the L-norm...
متن کامل